Registration

16:30-19:30 Welcome Reception

(Day 2) Tuesday, July 22, 2025

Coffee break

8:30-8:45Room A: Opening8:45-9:30Room A: Plenary Lecture 1

Reynolds analogy in wall bounded turbulence, Nicholas Hutchins

9:30-10:15 Room A: Plenary Lecture 2

10:15-10:35

Turbulence enhancement using tumble flow in direct-injection spark-ignition (DISI) engines, Choongsik Bae

Room A Room B Room C Room D DNS FOR TURBULENT FLOWS (1) ROUGH WALL TURBULENCE TWO-/MULTI-PHASE FLOWS (1) **ENVIRONMENTAL AND GEOPHYSICAL FLOWS (1)** Direct numerical simulation of turbulent transition Local impact of roughness topography on heat Settling velocity of elongated particles in a quiescent Direct Lagrangian tracking simulation of 10:35-10:55 on a swept flat plate with the effects of distributed transfer in turbulent flow over rough surfaces fluid: the effect of volume fraction precipitating-droplet growth in turbulent cloud roughness height and wavelength *Himani Garg, Jens Klingmann, Karl Johan Nogenmyr, *Lihao Zhao, Xinyu Jiang, Chunxiao Xu *Masaya Iwashima, Ryo Onishi *Kotaro Minamio, Kosuke Nakagawa, Ryo Araki, Ambrosio Pedreno Marin, Alexander Stroh, Yusuke Takahiro Ishida, Takahiro Tsukahara Kuwata Direct numerical simulations of turbulent flows in Relaminarization of turbulent flow in a spanwise Turbulent dispersion study on cough-induced Modeling of a heavy gas turbulent dispersion in 10:55-11:15 triply periodic minimal surface porous media rotating channel roughened with circular-arc ribs at complex urban environments particles *Adrian Rusnak, Rémi Roncen, Francois Chedevergne high rotation numbers *Ege Batmaz, Florian Webner, Daniel Schmeling, Claus *Sasa Kenjeres, Daoming Liu *Wei-Jian Xiong, Jinglei Xu, Bing-Chen Wang Wagner Towards high-fidelity simulation of urban flows: Relaminarization of turbulent puffs in pipe flow Experimental study of Reynolds number effects on Joint Reynolds number and mass loading influence 11:15-11:35 the turbulent flow in a ribbed square duct *Alex Yakhot, Basheer Ahmad Khan, Shai Arogeti on secondary motion in a particle-laden pipe flow: an Mean-flow statistics *Ming Teng, Josep Duro, Naim Munoz, Ernest Mestres, *J.-H. Ge, J. XU, B.-C. Wang eddy-resolving RANS study *Xiaoyu Wang, Jeanette Hussong, Suad Jakirlic Jordi Muela, Oriol Lehmkuhl, Ivette Rodriguez Direct numerical simulation of turbulent vertical Ultimate and super-ultimate states of turbulent Impact mechanisms in impinging jets on inclined Numerical simulation of the impact of different tree 11:35-11:55 surfaces: a high-speed tracking approach types on air pollution from vehicle emissions in channel flow with large-scale control using buoyancy thermal convection between rod-mounted Atila PS Freire, Cristian MP Rosero, *Juliana BR horizontal walls urban street canyons under chemical reactions forces *Menglei Wang, Takahiro Hayashi, Hiroya Mamori, *Alibek Issakhov, Temirlan Takkozha, Aidana *Yichen Zhang, Shingo Motoki, Genta Kawahara Loureiro Takeshi Miyazaki Sabyrkulova, Aizhan Abylkassymova Energy cascading in urban flows under adiabatic and Direct numerical simulation of the interaction of Momentum and heat transfer in turbulent channels On the fluid dynamics of toilet plume bioaerosols: 11:55-12:15 turbulent spots in the supersonic boundary layer on with drag-increasing riblets An experimental study based on flow visualization isothermal conditions: Insights from 2-m large eddy a parabolic profile *Stefano Cipelli, Natalie Rapp, Bettina Frohnapfel, *Fernando López Peña, Anne Gosset, Marcos Lema simulations *Ivan Egorov, Ivan Ilyukhin Davide Gatti *Rakesh Teja Konduru, Rahul Bale, Makoto Tsubokura

Lunch 12:15-13:35 Room A Room C Room D Room B DNS FOR TURBULENT FLOWS (2) AI-DRIVEN APPROACHES IN TURBULENCE (1) TWO-/MULTI-PHASE FLOWS (2) FLOW AND HEAT TRANSFER CONTROL (1) DNS-CNN simulation for high-Reynolds-number Microstructured falling film reactors enhance Prediction of drag reduction effect in pulsating 13:35-13:55 DNS of turbulent heat transfer in a channel hydrogen absorption and mixing: NMR/MRI uniformly heated by thin-film wall heater for the viscoelastic turbulent channel flow using 3D U-Net turbulent pipe flow by deep learning with validation of a ML-based denoising technique *Eitetsu Nakashima, Ryo Araki, Takahiro Tsukahara experiments generalization capability *Sota Kumazawa, Tomohiro Nimura, Akira Murata, *Yutaka Oda, Taisei Furukawa, Ryo Matsumoto, Ryo *Georges Saliba, Jan G. Korvink, Jürgen J. Brandner Nakayama, Ryosuke Matsumoto Kaoru Iwamoto Possibility of heat transfer enhancement by applying β-Variational autoencoder and transformer-based Recent advances in the understanding of laminar-Experimental study on evaporation-driven flow, 13:55-14:15 turbulent transition in rod bundles data-driven modeling of near-wall turbulence evaporation rate of single evaporation multipulsation to a pipe flow under non-reverse flow component sessile droplet *Elia Merzari, Carolina Bourdot Dutra, Luiz Aldeia *Niccolò Tonioni, Mohammad Umair, Lionel Agostini, conditions Franck Kehervé, Laurent Cordier, Ricardo Vinuesa *Hao Cong, Kazuyoshi Fushinobu, Tatsuya Kawaguchi *Hajime Nakamura, Yuki Funami, Shunsuke Yamada Machado DNS study of axial-rotation effects on the transport Twin experiments for data assimilation of cavitating Study on the morphological characteristics of Effect of plane wave ultrasound acoustic streaming 14:15-14:35 flow around a hydrofoil assuming PIV data as the of Reynolds stresses in a circular pipe flow flashing spray from a single-hole nozzle in a turbulent boundary layer pseudo-measurement data *Zhao-Ping Zhang, Bing-Chen Wang *Zhaorui Guo, Minhyeok Lee, Yuji Suzuki *Takumi Watanabe, Yoshitsugu Naka Shungo Okamura, *Kie Okabayashi Data-driven model of large-scale eddies in the 14:35-14:55 DNS investigation of elementary processes in Effects of refrigerant charge on ice formation Dissimilarity between momentum and heat transfers

	turbulent channel flow of viscoplastic fluid	energy-containing range in turbulence	distribution on the evaporator surface in a vapor	in a turbulent plane Couette flow controlled using
	*Takashi Ohta, Daisuke Michisaka	*Satoshi Matsumoto, Masanobu Inubushi, Susumu	compression refrigeration cycle	streamwise traveling wave
		Goto	*Bruno Marangolo, Leonardo Bernardini, Alekos	*Yusuke Nabae, Hiroshi Gotoda, Koji Fukagata
14:55-15:15	Numerical simulation of nonlinear stage of laminar-	Optimization of a bare turbulence model for fuel rod	l	Phase-averaged turbulence statistics and flow field
	turbulent transition under action of controlled	bundles based on PINN		in highly drag-reduced pulsating turbulent pipe flow
	disturbances	Chen Zhang, Zhenyang Sun, *Hongyang Wei, Sichao		*Aoba Katakai, Tomohiro Nimura, Akira Murata, Kaoru
	*Natalia Palchekovskaya	Tan, Ruifeng Tian		Iwamoto

15**:**15-15**:**25

Short break

	Room A	Room B	Room C	Room D
	RANS (1)	AI-DRIVEN APPROACHES IN TURBULENCE (2)	UNSTEADY FLOWS AND BODY FORCE EFFECTS (1)	FLOW AND HEAT TRANSFER CONTROL (2)
15:25-15:45	From transitionally to fully rough flow: Validation of	A novel wall model for wall-bounded turbulent flow	Unsteady characteristics of turbulent flow	Enhanced turbulent heat transfer by Kelvin-
	the v²-f-k-ω model	based on deep-neural-network discriminator	separation induced by a fence with a splitter plate in	Helmholtz rollers over longitudinal rib roughness
	*Ata Sojoudi, Donald J Bergstrom	*Ming Liu, Zhuchen Liu, Chisachi Kato, Yosuke	uniform flow	*Yusuke Kuwata
		Hasegawa	*Jinhao Kang, Xingjun Fang, Mark F. Tachie	
15:45–16:05	Tailored numerical grid approach in scale-resolving	AI modeling of wall heat flux in turbulent flame wall	Numerical investigation of quad-cyclorotor UAV at	Shape parameter effect on turbulence and passive
	turbulence models	interaction under pressure-rising combustion	hover using large-eddy simulation	scalar transport characteristics in deployable pipe
	*Fettah Aldudak, Holger Foysi	conditions	*Manabu Saito, Ryoichi Kurose	flows
		*Yuto Noguchi, Ye Wang, Mamoru Tanahashi		*Zen Fukuda, Yoshitsugu Naka, Sachiko Ishida
16:05–16:25	Machine learning for separated turbulent flow	Refractive index determination of dynamic droplets	Study on the influence of MHD interaction on	Numerical simulations of aerodynamic
	simulations: Classical versus dynamic methods	in a flow by analyzing light scattering signals with a	turbulent Taylor-Couette flow with end walls	characteristics of an elliptical wing in uniform flow
	*Stefan Heinz	machine learning approach	*Hiromichi Kobayashi, Takahiro Hasebe, Katsumi	far from or near to moving ground
		*Walter Schäfer	Namba, Takayasu Fujino, Hidemasa Takana	*Heizo Asai, Izdihar Hilal Amur Al Hajri, Katsuya Hirata
16:25–16:45	Turbulence models assessment in a supersonic	Numerical analysis and AI prediction of heat removal	Stability analysis of hypersonic streamwise corner	Integral method of friction decomposition for
	separator	using PCM attached to PV panel	boundary layer	turbulent flow over rough walls
	Ramyro Macedo, Rodrigo dos Anjos, *Tania Klein	Saleem Raza, *Ik-Tae Im, Hamada M Abdelmotalib	*Xin Liang, Dongxiao Xu, Youcheng Xi, Song Fu	*Wen Zhang, Xiang Yang, Peng Chen, Minping Wan

16:45-17:05

Coffee break

	Room A	Room B	Room C	Room D
	RANS (2)	COMBUSTION AND REACTING FLOWS	UNSTEADY FLOWS AND BODY FORCE EFFECTS (2)	FLOW AND HEAT TRANSFER CONTROL (3)
17:05–17:25	Improved k-ω-γ-A _r transition model considering effect of surface roughness and cross flow transition *Heng Zhang, ZhiXiang Xiao	Effect of near-wall flame quenching on the wall heat flux in a reacting turbulent channel flow *Ye Wang, Mamoru Tanahashi	active scalars features in turbulent double-diffusive convection	Turbulent heat and momentum transfer in pipe flow with deep axial grooves *Shingo Motoki, Sena Hattori, Hinata Kurihara, Genta
17:25–17:45	Assessment of an advanced near-wall treatment for URANS computations of natural circulation loops *Constantinos Katsamis, Dean Wilson, Timothy Craft, Hector lacovides	Numerical investigation of Rich-MILD-Quench- LeanAmmonia combustion in a dual-stage burner with cyclonic and quad JICF configuration *Donato Cecere, Matteo Cimini, Giovanni Battista Ariemma, Eugenio Giacomazzi	*Sasa Kenjeres, Rona Roovers Application of CFD analysis for the detection of buffeting *Daniel Palma, Lorenzo Pirillo, Giacomo Della Posta, Matteo Bernardini, Manuela Moretta, Fulvio Stella	Kawahara Effect of cross-sectional shape of 3-dimensional riblets upon drag reduction in turbulent channel flow *Taiki Watanabe, Tomohiro Nimura, Akira Murata, Kaoru Iwamoto
17:45–18:05	Analytical wall function for improved prediction of industrial heat transfer *Dean R Wilson, Constantinos Katsamis, Tim Craft, Hector Iacovides, Ehimen Iyamabo	Predictive modelling of ammonia combustion systems: Coupled LES-CMC and ISRN approach *B Harikrishnan, Epaminondas Mastorakos	Modeling of switching polygons in a bucket with a rotating bottom Shay David Amar, Alex Rashkovan, *Gennady Ziskind	Dimpling, turbulent eddy production, and improvement of aerodynamic performance *Peter Vorobieff, Sal Rodriguez, Ahmed Mohamed
18:05–18:25	Numerical simulation on single-stage transonic axial compressor *Xinzui Wang, Cheng Tian, Song Fu	Large eddy simulation of the HyShot II combustor *Marco Fratini, Giacomo Della Posta, Matteo Bernardini	Transient and steady-state performance of 0.25mm- thick novel ultra-thin vapor chambers for mobile device *Tsang-Chi Hsiao	Experimental studies of infrasonically induced heat transfer in a resonant cavity *Lei Wang, Emrik Strandh

(Day 3) Wednesday, July 23, 2025

8:30-9:15 Room A: Plenary Lecture 3 Prediction of turbulent flows: recent advances in low-order modeling of compressible and rough wall flows, Beverley J. McKeon Room A: Plenary Lecture 4 9:15-10:00 Heat and mass transfer measurement using thin film sensors, Osamu Nakabeppu

10:00-10:20	Coffee break				
	Room A DNS FOR TURBULENT HEAT TRANSFER	Room B TWO-/MULTI-PHASE FLOWS (3)	Room C ENVIRONMENTAL AND GEOPHYSICAL FLOWS (2)	Room D HEAT EXCHANGERS AND HEAT PUMPS	
10:20–10:40	Direct numerical simulation of turbulent heat convection in elliptical pipes of varying aspect ratios *Taylor C. Opperman, Bing-Chen Wang	Scaling formation induced by an orifice under turbulent flow regime *Atila PS Freire, Paulo HS Silva, Cristian MP Rosero, Juliana BR Loureiro	Simulation and theoretical study of turbulence-wave interaction in Langmuir circulation Anging Xuan, *Lian Shen	Thermal performance of additively manufactured heat exchangers based on cellular structures *Yueliang Zhang, Xiyuan Su, Yu Rao, Xintong Wang, Kirttayoth Yeranee	
10:40–11:00	DNS study of turbulent heat transfer through a concentric annular square duct *Taylor C. Opperman, Mark S. Tachie, Bing-Chen Wang	The effects of compliant walls on turbulent heat transfer *Morie Koseki, Marco Edoardo Rosti	Experimental study of turbulent flow above a fence with a splitter plate in uniform flow at Re = 2700 *Jinhao Kang, Xingjun Fang, Mark F. Tachie	Exploring dissimilarities in momentum and heat transfer over homogenous rough surfaces *Simon Dalpke, Jiasheng Yang, Bettina Frohnapfel, Alexander Stroh	
11:00–11:20	DNS study of turbulent heat transfer in a square duct with longitudinal ribs Mark Sedem Tachie, *Taylor Cole Opperman, Bing-Chen Wang	Influence of the properties of the elasticity modulus on the hydrodynamic characteristics of the flow in the nasopharynx *Alibek Issakhov, Aidana Sabyrkulova, Aizhan Abylkassymova	On nuclear dynamics in string-based thundercloud plasmas *Geert Cornelis Dijkhuis	Numerical study on the flow and heat transfer mechanisms of oblong dimpled plate heat exchangers *Jiajun Xie, Yu Rao, Yueliang Zhang	
11:20–11:40	Improved heat transfer performance of multiple impinging jets with individually controlled intermittent jets based on DNS *Ippei Shibata, Koichi Tsujimoto, Toshitake Ando, Mamoru Takahashi	Numerical study of two-phase flow in an aeroengine bearing chamber using a coupled discrete phase and Eulerian wall film model Eric Boudreau, Baafour Nyantekyi-Kwakye, *Dominic Groulx, Laslo Diosady, Ivan Sidorovich Paradiso	Numerical study of wake turbulence behind fractal- trees *Yuwei Yin, Ryo Onishi, Seiya Watanabe, Igor Igorevich Segrovets, Kouji Nagata^5, Takayuki Aoki	Effect of oblique angle and wave amplitude on heat transfer performance of v-shaped pulsed fin heat exchanger *Tianyang Fang, Kenichi Morimoto, Yuta Tsujimoto, Nobuki Daimon, Yuki Shiraiwa, Yuji Suzuki	
11:40–12:00	Effects of conjugate heat transfer on the thermal properties of turbulent flow over rough walls *Alexander Stroh, Francesco Secchi, Himani Garg	(Poster Presentation) Experimental study and development of a prediction model for cross-sectional void fraction of water-steam two-phase flow in vertical helical tubes *Xiaoyi Wu, Fucheng Chang, Jiacheng Lou, Qisong Yang, Xi Li, Zhibin Li, Huixiong Li	A novel VAWT design for urban wind utilization *Sixiong Ge, Yan Yan, Chengsheng Jiang, Jie Xu, Jiahuan Cui	Development of a loop heat pipe for top heat mode *Atsushi Tsujimori, Shinnosuke Hashimoto, Yui Sato, Ryosei Sasagawa	

12:00-13:20	Lunch				
	Room A NUMERICAL SIMULATION OF MULTIPHASE FLOWS (1)	Room B TWO-/MULTI-PHASE FLOWS (4)	Room C GENERAL HEAT AND MASS TRANSFER	Room D COMPRESSIBLE AND HIGH-SPEED FLOWS (1)	
13:20–13:40	DNS of turbulent flow of liquid hydrogen with wall boiling *Tatsuya Yonemura, Takashi Ohta	Combined influence of surface orientation and roughness on pool boiling heat transfer performance *Gyanesh Kumar, Umesh Madanan	Molecular dynamics study on the effects of cuboid nanostructure on the distribution of local thermal resistance at a solid-liquid interface *Masahiko Shibahara, Takuto Omori, Kunio Fujiwara	Numerical simulations on aerodynamic heating and flow characteristics of hypersonic Apollo-shaped capsule induced by boundary layer trip *Kento Inokuma, Aiko Yakeno, Flavien Colusso, Shuto Yatsuyanagi, Hideyuki Tanno	
13:40–14:00	The effect of turbulence on interfacial heat and mass transfer in condensing bubbly flow <i>*Yixiang Liao</i>	Heat transfer coefficient of two-phase flow boiling of R455A in mini-channel *Hoang Ngoc Hieu, Jong Taek Oh, Jong Kyu Kim	Pushing the boundaries of dropwise condensation via spontaneous shedding of microdroplets *Xiao Yan, Rong Chen, Qian Fu, Xun Zhu, Qiang Liao	Effect of fuel injections at different locations along the length of the combustor *Prathamesh Rajesh Chine, Yogeshkumar Velari, P.A. Ramakrishna	
14:00–14:20	Multi-physics simulation of ice crystal icing considering ice erosion phenomenon Wakana Tatsuta, Koji Fukudome, Soichirou Fujimura, *Makoto Yamamoto	Measurements of temperature and boiling heat transfer of R1336mzz(E) in a horizontal circular tube Shunsuke Yamada, *Shunsuke Yamada, Yuki Funami, Hajime Nakamura	Experimental investigation on heat transfer and pressure drops across a lattice structure *Leonardo Bernardini, Alekos Ioannis Garivalis, Bruno Marangolo, Mauro Mameli, Sauro Filippeschi, Paolo Di Marco	Hybrid RANS/LES simulations on the turbulence and loss mechanism of different trailing edges for highly- loaded turbine cascade *Weihang Ding, Xinrong Su, Xin Yuan	
14:20–14:40	Pressure-equilibrium semi-implicit algorithm for multi- component real fluid flows *Ibuki Tsutsumi, Sho Wada, Abhishek Lakshman Pillai, Ryoichi Kurose	SDMS-PLIF thermographic measurements of nucleate flow boiling in a vertical square minichannel Zengchao Chen, Aleksei S. Lobasov, Surya Narayan, Konstantin S. Pervunin, *Christos N. Markides	Hybrid CHT-LES/RANS investigation of the tangential effusion cooling for a combustor liner *Xuanwu Chen, Qinghua Zeng, Bing Wang, Pengfu Xie	Numerical studies of flow dynamics and control for partially ioinzed plasma *Zhigang Pu, Kun Xu	
14:40–15:00	Production and transport of turbulent energy in magnetised jet flows. *Nick Williams, Alessandro De Rosis, Alex Skillen	Numerical study on the effect of water outlet pressure on the performance of a horizontal gravity separator for three-phase mixtures *Hong-Cheol Shin, Hee-La Jang, Inju Hwang, Hyeonseok Seo	evaporation for an energetic system *Thomas Doury, Pierre Horgue, Romain Guibert, Jean	Accelerated discontinuous Galerkin solver for two- dimensional Navier-Stokes equations based on the <i>p</i> - multigrid method *Zhehao Sheng, Yan Yan, Jiahuan Cui	
15:00-15:20		Coffe	e break		
	Room A TURBULENCE IN COMPLEX STRUCTURE	Room B TWO-/MULTI-PHASE FLOWS (5)	Room C SCALAR TRANSPORT IN CONVECTION (1)	Room D NUMERICAL HEAT TRANSFER IN INDUSTRIAL APPLICATIONS (1)	
15:20–15:40	Investigation of counter-gradient transport structures in stably stratified homogeneous shear turbulence *Zhiming Lu, De Li	Phase change and heat transfer at the mesoscale Mirko Gallo, Leonardo Caciolla, Matteo Teodori, *Carlo Massimo Casciola	On the temperature and pressure footprints in high- Reynolds-number turbulent boundary layers *Mayu Kamada, Sayoko Mayama, Makoto Iwasaki, Kentaro Kato, Yoshitsugu Naka, Ayumu Inasawa, Masaharu Matsubara, Shumpei Hara	On the CFD modelling of natural convection in RVACS: analysis of DNS and RANS simulations *Jundi He, Shuisheng He, Graham Macpherson, Dillon Shaver, Elia Merzari, Wei Wang, Bo Liu, Greg Cartland- Glover, Ollie Lim, Tim Houghton, Constantinos Katsamis, Chris Sigournay, Ioannis Kyritsopoulos	
15:40–16:00	Experimental investigation of porous media turbulence *Arnaud Mure d'Alexis, Rémi Roncen, Ludovic Ambrosiani, David Donjat, Olivier Léon, Fabien Mery	Dynamic tuning of phase change composites via the electric field to control the heating wall temperature Boyu Li, Zirui Xu, *Jian Wu	Spectral dissimilarity between momentum and heat transfers in a plane Couette turbulence *Kengo Suetsugu, Takahiro Tsukahara, Takuya Kawata	Investigating the Reynolds analogy for triply periodic minimal surfaces in low-Reynolds flow regime Laura Savoldi, Antonio Cammi, Eleonora Gajetti, *Luca Marocco	
16:00–16:20	Flow patterns and heat transfer in a channel with a plasma actuator in burst mode by CFD *Akihiko Mitsuishi, Hiroyuki Nishida, Kaoru Iwamoto	Pressure drop of two-phase flow boiling of R455A in mini-channel *Hoang Ngoc Hieu, Jong Taek Oh, Jong Kyu Kim	Spectral analysis on turbulent diffusion of passive scalar in a turbulent channel flow *Yusuke Ueki, Hiroya Mamori, Takuya Kawata	Effects of nozzle geometry on turbulent characteristics of 3D offset synthetic jets *Akili Elizabeth Cyrus, Keziah Naa Densua Hammond, Ebenezer Ekow Essel	
16:20–16:40	Transitional RANS and HRLM simulations for DU-91- W2-250 at high Reynolds number *Haitian Lin, Siya Jiang, Song Fu	Modeling fuel effects on high-pressure transcritical mixing of Sustainable Aviation Fuels *Marco Maria Molinari, Davide Cavalieri, Leandro Lucchese, Jacopo Liberatori, Matteo Blandino, Pietro	Heat transfer and flow modulation of turbulent plane Poiseuille flow by thermal stratification at low Reynolds number *Koji Fukudome, Takahiro Tsukahara, Hiroya Mamori, Makoto Yamamoto	Numerical simulation study of transient, unstable flow in a complex natural circulation loop system *Yiwa Geng	
		Paolo Ciottoli			

(Day 4) Thursday, July 24, 2025

8:30-9:15	Room A: Plenary Lecture 5
	3D Lagrangian aspects of bubbly flows: measurement, turbulence and collective behavior, Dirk Lucas
9:15-10:00	Room A: Plenary Lecture 6
	Modeling and design optimization of a supersonic turbomachinery-integrated solar reactor for hydrogen production, Nesrin Özalp

10:00-10:20	Coffee break				
	Room A COMBINED LES/RANS	Room B COMPRESSIBLE AND HIGH-SPEED FLOWS (2)	Room C SCALAR TRANSPORT IN CONVECTION (2)	Room D NUMERICAL HEAT TRANSFER IN INDUSTRIAL APPLICATIONS (2)	
10:20–10:40	A complete formulation of the resolution parameters for the PANS model: from RANS to DNS *Branislav Basara, Zoran Pavlovic, Sharath Girimaji	Controlled dissipative small-scale motions in turbulent separation cells Curtis J Peterson, *Bojan Vukasinovic, Ari Glezer	Data-driven modeling of turbulent heat transfer over three-dimensional irregular rough surfaces *Kuga Terada, Yuki Adachi, Na Donggeon, Yusuke Kuwata, Kazuhiko Suga	Numerical research on flow structures and heat transfer in pulsed jet impingement with crossflow *Yihui Xiong, Yu Rao	
10:40–11:00	Physically consistent Reynolds-averaged Navier– Stokes equations with large eddy simulation capability *Stefan Heinz, Adeyemi Fagbade	High-fidelity numerical simulation of conjugate heat transfer in shock wave/boundary layer interactions *Giacomo Della Posta, Matteo Bernardini	Experimental investigation of turbulent heat transfer over roughness elements *Shilpa Vijay, Beverley McKeon	Numerical investigations on the leakage flow and heat transfer characteristics of brush seal with the deflector plate Hailong Qiu, Pengfei Song, Jie Qu, Bo Bai, Zhigang Li, *Jun Ll	
11:00–11:20	Hybrid RANS-LES simulation of aerosol dispersion and evaporation with diffusion-inertia model *Johann Miranda-Fuentes, Christophe Friess, Jérome Jacob	Analysis of normal shock wave instability in transonic moist air flow within convergent-divergent nozzles using experimental and numerical approach *Slawomir Dykas, Mirosław Majkut, Krystian Smołka	Experimental measurement of the horizontal and vertical Nusselt numbers in turbulent thermal convection using quantitative shadowgraphy *Lu Zhang, Jing Dong, Ke-Qing Xia	Pre-stall prediction of a transonic engine compressor based on URANS and hybrid RANS/LES methodology *Julian Alexander Scheibel, Marcel Stößel, Dragan Kozulovic	
11:20–11:40	Evaluation of hybrid RANS/LES switching functions for natural convection: a study of turbulent transition *Ioannis Kyritsopoulos, Alistair Revell, Sofiane Benhamadouche, Vladimir Duffal	Numerical study of cooling microjets in hypersonic shock wave turbulent boundary layer interaction Zhenyuan Tang, Xueying Li, *Jing Ren	High-fidelity simulation of developing mixed convection in a buoyancy-aided vertical pipe flow Rodrigo Vicente Cruz, *Cédric Flageul, Eric Lamballais, Juan C. Uribe, Vladimir Duffal, Erwan Le Coupanec, Sofiane Benhamadouche	Large eddy simulation and analysis of inclined film cooling jet flow at the turbine blade leading edge *Yifan Yang, Kexin Hu, Xinrong Su, Xin Yuan	
11:40–12:00	A modelling strategy for log-layer mismatch in channel flows *Puneeth Bikkanahally, Remi Manceau	Numerical investigation of supersonic base flow using high-order finite differencing method *Wenchang Wu, Xingsi Han	Investigations on the scale-up of mixed mode forced convection solar dryer Bhanudas B. Takale, Mahesh Dasar, *Ranjit S. Patil	Numerical modeling of a high-temperature thermochemical heat storage reactor *Tianchao Xie, Jaimy Gebbeken, Zhen Cao, Iliana Doliou, Kyriakos Fotiadis, Martin Roeb, Christos Agrafiotis, George Karagiannakis, Nickolas Vlachos, Abhishek Singh	
12:00–12:20	Adaptive turbulence simulation method for integrating outer and inner aerothermal flows and heat transfer through turbine blades <i>*Tianyi Wang, Yimin Xuan</i>		Influence of wall vorticity layer on wall-temperature distribution in turbulent boundary layers *Shumpei Hara	Numerical analysis of the application of high- concentration alternative solutions in the PRO process *Piotr Łapka, Juliusz Wachnicki	

12:20-13:40

	Room A	Room B	Room C	Room D
	LES	TWO-/MULTI-PHASE FLOWS (6)	APPLICATIONS IN ENERGY, PROCESS, AND	NUMERICAL HEAT TRANSFER IN INDUSTRIAL
			ENVIRONMENT (1)	APPLICATIONS (3)
3:40–14:00	On the role of energy spectra in high-wavenumber	Experimental study on enhancement of heat transfer	Internal waste heat recovery in port-fuel hydrogen	Numerical analysis on UTVC/plate-fin heatsink modules
	region for the mean-velocity prediction in large eddy	by spray cooling of leaf vein surface with surfactant	split cycle engine with liquid nitrogen compression	with an axial fan
	simulation	*Rui Zhou, Hua Chen, Wen-long Cheng	*Angad Panesar, Elisa Wylie, Robert Morgan	*Ting-Yun Kuo, Shwin-Chung Wong, Chi-Chao Hsu,
	*Ken-ichi Abe			Chung-Yen Lu
14:00–14:20	Scale-resolving computational study of flow dynamics	A novel loop heat pipe evaporator for multi-side	Enhancing thermal and physical properties of	Twilight zone quasidiffuse radiative transfer 3D
	in fuel cells: insights into laminarization phenomena	cooling of a heat source	composite phase change materials using biochar	modeling
	and turbulence anisotropy	*Nguyen Phan, Tuan Anh Nguyen, Huy Duc Bui, Bach	*Kaihan Xie, Wenke Zhao, Yaning Zhang, Bingxi Li	Vladimir Pavlovich Budak, Pavel Aleksandrovich
	*Louis Krüger, Jeanette Hussong, Suad Jakirlic	Xuan Nguyen, Hosei Nagano		Smirnov, *Sergey Anatolievich Dolgushin
14:20–14:40	Plasma-based active flow control for heave-pitch	Study of the header configurations on the flow and	Entropy generation due to air distribution in rooms	Impact of operating Parameters on the permeate flux
	motions of a NACA 0012 airfoil	stress distribution of SCO2 in parallel channels	*Zhenhua Xia, Mats Sandberg, Yuguo Li	of hollow fiber membrane distillation systems
	Dereje Arijamo Dolla, *Chin-Cheng Wang	Shuo Yang, Hongyan Fan, *Jian Wu		Ahmed Gweda, *Mohammed A Antar
14:40–15:00	High-fidelity simulation of developing mixed	Experimental investigation on the heat transfer of	Performance evaluation of small wind turbines under	Heat transfer analysis of a bayonet tube under normal
	convection in a vertical tube bundle configuration	supercritical carbon dioxide in a horizontal heating	large turbine wake effects in a wind farm	and concentrated heat flux conditions
	*Rodrigo Vicente Cruz, Cédric Flageul, Eric Lamballais,	tube	*Yanting Lin, Yun-Jane Chung, Shan-Yuan Wang, Huei	Abhishek Raj, Amit Raj, Mrityunjay Sinha, *Ram Sharma
	Juan C. Uribe Torres, Vladimir Duffal, Erwan Le	Yu-Cheng Pan, Lei Wang, *Jin-Der Lee, Shao-Wen Chen	Chu Weng	
	Coupanec, Sofiane Benhamadouche			
15:00–15:20	Numerical study on the interaction of multiple	Investigation of the semi-mechanistic wall boiling	Investigation of the heat transfer coefficient	Design and validation of a micro-wind tunnel for in-situ
	subsequent jets in a subsonic cross-flow	model developed in ANSYS FLUENT	correlations of a structured monolith as solar receiver	frost formation imaging
	*Leandro Lucchese, Edoardo Flavio Laurora, Davide	Dylan Logan, *Dominic Groulx, Mohammad Saeedi, Ivan	with computational and lab data	*Austin Labuschagne, Tingting Zhu, Wilko Rohlfs
	Cavalieri, Jacopo Liberatori, Riccardo Malpica Galassi,	Sidorovich Paradiso, David Koo	Aysha Melhim, *Konstantinos E Kakosimos, Athanasios	
	Giuliano De Stefano, Pietro Ciottoli		G Konstandopoulos	

Lunch

	Room A	Room B	Room C	Room D NUMERICAL HEAT TRANSFER IN INDUSTRIAL
	DNS FOR TURBULENT FLOWS (3)	BIOLOGICAL AND BIOMEDICAL FLOWS	SCALAR TRANSPORT IN CONVECTION (3)	APPLICATIONS (4)
8:30-8:50	High-order compact gas-kinetic scheme for	Impact of environmental temperature on aerosol	Convective heat transfer of immersed heat	Study on the formation mechanism of pore ice in
	turbulence simulation	dispersion dynamics during violent expiratory events	exchanger storage tank with microencapsulated	frozen soil based on LBM
	*Fengxiang Zhao, Yaqing Yang, Kun Xu	*Nicolás Catalán, Salvatore Cito, Sylvana Varela,	phase change slurry	*Zongwei Gan, Wenke Zhao, Yaning Zhang, Bingxi Li
		Alexandre Fabregat, Anton Vernet, Jordi Pallarès	*Alekos Ioannis Garivalis, Yuri Scardigli, Dario Groppi, Daniele Testi, Carlo Bartoli	
8:50–9:10	Advances in the description of a spatially developing	Enhanced oxygen delivery during pulsatile bi-level	Deposition and convective evaporation of	Numerical investigation of heat source function
	incompressible turbulent mixing layer and its self-	ventilation	polycaprolactone solution droplet after impacting a	within a spherical particle under light irradiation
	similarity	*Seyedmohsen Baghaei Oskouei, Seyyed Hossein	smooth surface	*Shen-Ju Sung, Wen-Ken Li
	*Svetlana Poroseva	Monsefi, Alexander Aloy, Michael Kurz, Robert Kölbl,	Alexandra Piskunova, Vladlena Chobotova, Alexander	
		Margit Gföhler, Michael Harasek	Ashikhmin, *Maxim Piskunov	
9:10–9:30	Active flow control on a plunging/pitching airfoil	Numerical investigation of dynamics of nanoscale	Experimental investigation on scalar mixing of cross	Effects of offset height ratio on flow characteristics
	using AC-DBD plasma actuators	DNA-liposome complex under shear flow	flow over P/D = 1.58 tube bundle using LIF	of a synthetic jet attaching on a wall
	*AbdulGafoor CP, Aniruth Arun, Nagabhushana Rao	Lei Kang, *Guohui Hu	*Yunhao Luo, Xiaoyang Xie, Yifan Zhou, Houjian Zhao,	*Keziah Naa Densua Hammond, Naveed Naeem, Akili
	Vadlamani		Xiaowei Li, Xinxin Wu	Elizabeth Cyrus, Ebenezer Ekow Essel
9:30-9:50	Universality of velocity statistics in high-Reynolds		Experimental study on the flow and heat transfer	Reynolds number effects on the unsteady wake
	number wall-bounded flows		characteristics of a parallel natural circulation boiling	•
	*Yoshiyuki Tsuji, Yoshinobu Yamamoto, Mre Ono,		heat transfer system with a small horizontal	*Joseph Kwabena Kodie-Ampaw, Hung Thuc Gia Banh,
	Noriyuki Furuichi		inclination angle	Ana Sofia Garcia Hernandez, Ebenezer Ekow Essel
			Zehui Li, *Pengfei Ma, Haifeng Wang, Hui Liu, Tong Lin	
9:50–10:10			Effects of settling, thermal inertial particles and	Comparative assessment of data-free and data-
			bubbles on the hydrodynamic stability of the	driven eigenspace perturbations for uncertainty
			Rayleigh-Bénard system	quantification in CFD
			*Silvia C Hirata, Enrico Calzavarini, Saad Raza	*Shivam Saini, Amit Sachdeva, Nagabhushana Rao
				Vadlamani, Vinod Kumar

(Day 5) Friday, July 25, 2025

10:10-10:30	Coffee break				
	Room A NUMERICAL SIMULATION OF MULTIPHASE FLOWS (2)	Room B APPLICATIONS IN ENERGY, PROCESS, AND ENVIRONMENT (2)	Room C LATTICE BOLTZMANN METHOD	Room D NUMERICAL HEAT TRANSFER IN INDUSTRIAL APPLICATIONS (5)	
10:30–10:50	A hybrid CFD/CAA solver for simulating real fluid flows and their noise generation under transcritical and supercritical conditions *Abhishek Lakshman Pillai, Takuto Yamada, Yuya Kawase, Sho Wada, Ryoichi Kurose	Effect of density ratio on the film cooling effectiveness across effusion cooled surfaces with various blockage ratios *Omar Deyab Aly, Lesley M Wright, Ibrahim Galal Hassan	A selective frequency damping method for lattice- Boltzmann solvers Jerome JACOB, Samuel CARRE, *Christophe FRIESS	Optimising conjugate transfer in porous structures: The role of flow instabilities and structural defects *Jaimy Gebbeken, Nickolas Vlachos, Wilko Rohlfs, Abhishek Kumar Singh	
10:50–11:10	Numerical simulation of spray cooling on heated wall at different temperatures with swirling nozzle *Bingrui Li, Jiayu Liu, Xin Wang, Bingxi Li, Wei Wang	Study on loop heat pipe for traction inverter cooling in electric vehicles *Makoto Kamata, Yuta Shimada, Noriyuki Watanabe, Shinobu Aso, Kazuki Sadakata, Shigeyuki Tanabe, Hosei Nagano	Simulations of turbulent Poiseuille duct flow with lattice Boltzmann method on non-uniform mesh YH. Chiu, BX. Jin, SW. Feng, *Chao-An Lin	Numerical modeling of a Vuilleumier heat pump and validation using CFD reference data *Israa Barakat, Eric Albin, Shihe Xin	
11:10–11:30	Numerical simulation study of single bubble flow boiling in microgravity *Xin Wang, Aoqian Deng, Bingrui Li, Bingxi Li, Wei Wang	Direct simulation of multi-scale flow through porous structures in circular pipe and its application to reactor flow investigation *Shun Tamura, Mitsuho Nakakura, Yusaku Matsudaira, Koji Matsubara	Lattice Boltzmann simulation of pollutant dispersion using Eulerian aerosols models *Jerome Jacob	Turbulence simulation based on gas-kinetic scheme for internal and external flow *Yue Zhang, Kun Xu	
11:30–11:50	Effects of mass transfer coefficients on evaporation in a thermosyphon charged with HFE-7100 *Chanyong Lee, Kwon-Yeong Lee	Flow field optimization for HTPEM fuel cells: a comparative study of serpentine-parallel and wavy flow channels *Emanuele D'Alessio, Mahmoud Mohamed Mohamed Abdelkader, Filippo Donato, Giuliano Agati, Domenico Borello	Enhanced two-phase flow model for phase change with GPU parallel optimization approach *Xiaoyu Wu, Yueming Li, Xian Wang	Effects of perforated baffles on sloshing damping optimization: a CFD approach *Lorenzo Pirillo, Daniel Palma, Benedetta Peroni, Francesca Rossetti, Fulvio Stella, Agostino Neri	
11:50–12:10	Turbulent modeling of enhanced pool boiling through sintered particle surface coating *Yusuf Rahmatullah, Tsrong Yi Wen	Impact of microstructural inhomogeneity on thermodynamic losses in SOFC electrodes: a large dataset study *Tomasz Aleksander Prokop, Szymon Buchaniec, Janusz Szmyd, Grzegorz Brus	A mass and energy conserving boundary treatment for hybrid Lattice-Boltzmann/Finite-Volume simulations *Iason Tsetoglou, Denis Ricot, Song Zhao, Eric Serre, Pierre Boivin	Optimization of air conditioning system of railway coach *Ritu Raj, Naveen Kumar Chahel, Nobuyuki Oshima, Rahul Bale	
12:10–12:30	Transient critical heat flux prediction model coupling two-dimensional numerical thermal conductivity considering bubble stochastic characteristic *Xinyan Xu, Shuwen Yu, Changhong Peng		Estimation of transport coefficients for water-air mixtures using the Chapman-Enskog method *Makoto Sugimoto, Yosuke Kishimoto, Honatsu Sorai, Manabu Tanaka, Takayuki Watanabe, Masaya Shigeta	Field inversion based RANS model for improved prediction of highly-loaded turbine blade *Xiao Yan, Xinrong Su, Xin Yuan	

12:40-13:00 Room A: Closing